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Abstract—Smart grids, where cyber infrastructure is used to
make power distribution more dependable and efficient, are
prime examples of modern infrastructure systems. The cyber
infrastructure provides monitoring and decision support intended
to increase the dependability and efficiency of the system. This
comes at the cost of vulnerability to accidental failures and
malicious attacks, due to the greater extent of virtual and physical
interconnection. Any failure can propagate more quickly and
extensively, and as such, the net result could be lowered reliability.
In this paper, we describe metrics for assessment of two phases
of smart grid operation: the duration before a failure occurs,
and the recovery phase after an inevitable failure. The former
is characterized by reliability, which we determine based on
information about cascading failures. The latter is quantified
using resilience, which can in turn facilitate comparison of
recovery strategies. We illustrate the application of these metrics
to a smart grid based on the IEEE 9-bus test system.

I. INTRODUCTION

Recent blackouts attest to the need for measures to predict
and assess the reliability of power grids. The August 2003
Northeast blackout affected nearly 50 million customers in
seven US states and Ontario. Rigorous investigation of the
cause determined that aging infrastructure, lack of real-time
information and diagnostic support, local decision-making
without regard to interconnectivity, and human error allowed
localized failure of a generating plant to force the shutdown
of over 100 power plants [1]. The source of the cascade was
contact of stressed power lines with overgrown trees - a failure
whose effects could have been mitigated given intelligent and
real-time diagnostic support that would reconfigure adjacent
power grids to prevent propagation of the failure.

Eight years later, in August 2011, a blackout affected
nearly three million customers near San Diego. The causes
were judged to be strikingly similar to those of the 2003
blackout, despite significant activity by regulatory bodies in
an attempt to prevent outages similar to what occurred in
2003 [2]. Recent large-scale and high-consequence outages
in several other countries, including India and Brazil, attest
to the importance of predicting, preventing, and mitigating
the effects of cascading failures. Complete replacement of
aging infrastructure is infeasible; however, use of cyber infras-
tructure can equip power grids with the information required
for prompt detection and diagnosis, and the ability to limit
failure propagation. Monitoring capabilities and intelligent
control are among the essential attributes of smart grids, which
are intended to increase the dependability and sustainability

of power distribution. The communication, computing, and
control elements required to embed the power grid with the
required intelligence make smart grids more complex than
their purely physical counterparts. Each added component is
a potential source of failure, and the increased connectivity of
the grid makes failure propagation more likely. Assessment,
modeling, and prediction of the reliability of smart grids
is critical to justifiable reliance on these systems. Failures
are inevitable, and as such, techniques are required to guide
recovery.

In this paper, we propose solutions to both challenges and
illustrate the application of our techniques on a small smart
grid based on the IEEE 9-bus test system. Utilizing simulation,
we derive information about potential cascading failures and
use this information to populate the stochastic reliability model
proposed in our earlier work [3]. Our prior work considered
a larger grid, but was constrained in application. The first
contribution of this paper is extension of the previous model
to allow for consideration of a richer set of intelligent devices
in determining reliability of the smart grid. The simulation
framework through which our case study was conducted
facilitates future analysis of survivability by allowing for
degraded levels of functionality. Instead of the hardware-in-
the-loop simulator that bound us to a specific topology and
specific cyber infrastructure, the current simulation framework
allows for analysis of arbitrary physical and cyber-physical
topologies, and facilitates fine-grained fault injection. In de-
termining reliability, our focus is on the consequences of a
specific failure, not its cause. As such, the technique can be
utilized in security analysis.

Reliability quantifies the likelihood of a system to function
as specified, under given conditions, over a given duration
[4]. It takes a binary view of a system, where the only states
possible are “functional” and “failed.” As such, this metric is
of limited use in evaluating the system after a failure occurs.
A quantitative metric useful to this end is “resilience,” defined
as the ability of a system to bounce back from a failure
[5]. The second contribution of this paper is identification of
performance indices appropriate for analysis of resilience, and
using the resulting resilience metric to compare strategies for
recovery from line failures in the IEEE 9-bus system.

The remainder of this paper is organized as follows. The
metrics we with which we capture reliability and resilience,
respectively, are presented in Section II. As a case study,



application of these metrics to the IEEE 9-bus is illustrated
in Section III. Section IV positions our work in the context of
related literature. Section V concludes the paper and describes
future extensions planned for this research.

II. METRICS

In this section, we describe metrics and techniques for
modeling of reliability and resilience, respectively. Our view of
the system’s operation is based on [5] and [6] and illustrated
in Figure 1. The system is initially “functional,” at time t0.
This perspective is consistent with the view taken in evaluating
system reliability - the system is considered to be binary
in operation; it either works or has failed. The extent of
functionality is not of interest in determining reliability. Some
quantifiable indicator of the performance of the system is
selected as the figure of merit, F (t), and monitored over
time. If F (t) exceeds a minimum threshold, the system is
considered functional. A failure (denoted as a “disruptive
event” in [6]) occurs at time te. For simplicity, we assume
that the failure is detected instantaneously and the system is
immediately considered to have failed. Analysis of reliability
can capture the duration between t0 and te - once the system
has failed, it leaves the purview of reliability analysis, which
is incapable of capturing degraded operation or recovery.
Availability, resilience, and survivability can capture the state
of the system after a failure.
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Fig. 1. System operation over time.

In Figure 1, the system is assumed to function in a degraded
mode from te to td, when it reaches the point where the
functionality is considered to be entirely lost, rather than
degraded. Recovery/repair is initiated at time ts, when the
system regains functionality, albeit in a degraded state. At
tf , the system is assumed to be back in the fully-functional
state that is the subject of reliability analysis. Availability
captures the ratio of “up time” to “down time.” Survivability
quantifies degraded performance. Resilience, the second metric
discussed in this paper, captures the ability of the system to
recover from a failure; i.e., the success of recovery efforts
[4]. The remainder of this section describes our approach to
quantifying, respectively, the reliability and resilience of a
system.

A. Reliability

The overall reliability of a cyber-physical power grid is a
function of the respective reliabilities of its elements, including

both physical components, e.g., generators and transmission
lines, and cyber components, e.g., control software, communi-
cation links, FACTS devices, and sensors. As such, we chose
the Markov Imbeddable Structure (MIS) technique [7] - an
analytical method for reliability evaluation of systems with
interdependent components - as the mathematical foundation
for our proposed reliability model. Our past and current work
have this foundation in common; they differ considerably in
the scope of components (and hence failures) considered.

The MIS model requires identification of “Functional” and
“Failed” states of the system, and computes the system reliabil-
ity as the probability of being in one of the “Functional” states.
We explain the MIS technique using an example. Assume that
we have a system that has n = 2 transmission lines. The state
of each transmission line is represented by a ‘1’ when it is
functional and a ‘0’ otherwise. Enumerating all states of the
system results in the matrix of Table I.

TABLE I
ENUMERATION OF SYSTEM STATES

Components

States l1 l2

S0 1 1

S1 1 0

S2 0 1

S3 0 0

Next, we create a vector of probabilities, Π0. This vector
represents the probability of each state, Si, being the initial
state of the system. With n components, N = 2n states are
possible.

Π0 = [Pr(Y0 = S0), P r(Y0 = S1), · · · , P r(Y0 = SN )]
T

(1)
We also create a transition probability matrix, Pl. Each

element in the matrix, pij(l), is the probability of the system
changing its state from state Si to state Sj due to the failure of
transmission line l. For example, in Table I, when transmission
line l1 fails, the state of the system will change from S0 to
S2. The probability will be of this transition is 1, because the
failure of l1 is certain to cause an initially functional system
(in state S0) to transition to S2.

Finally, we create a vector, u, of length 2n. Element u[i] in
the vector depends on state Si in the binary matrix. If state Si

is considered a functional state, then u[i] will be ‘1’, otherwise,
it will be ‘0’. Collectively, the matrices and vectors defined
enable determination of system-level reliability as a function
of the respective reliabilities of components of the system, as
in Equation 2.

R = (Π0)T

(
n∏

l=1

Pl

)
u (2)

B. Resilience
Resilience quantifies the ability of a system to recover from

a failure. Recovery does not imply perfect restoration of the



system’s functionality - it implies that the system has returned
to a state where it is considered functional. As described earlier
in this paper, a quantifiable aspect of the performance of the
system is evaluated at the significant time points illustrated
in Figure 1. Examples include the total number of voltage
or current violations in a power grid, or the percentage of
the overall power demand that can be met. We assume that
the system begins with full functionality, denoted as F (t0).
The failure event causes the performance to degrade. F (td) is
the value at which catastrophic failure is considered to have
occurred. The system performance remains in this catastrophic
state until recovery action is initiated at time ts, when partial
functionality begins to be restored. F (tf ) is considered to be
acceptable functionality - the system may not return to the
perfectly functional state, but it delivers performance that is
deemed acceptable. Resilience captures this recovery process
as a ratio of recovered functionality to lost functionality.
Mathematically, for a given instant t during the recovery
process (ts, tf ) from a specific failure:

Λ(t) =
F (t)− F (td)

F (t0)− F (td)
(3)

It follows that 0 ≤ Λ(t) ≤ 1 for all t ∈ (ts, tf ), assuming
that the recovery action succeeds in restoring functionality.

III. CASE STUDY

As a case study, we illustrate modeling and evaluation
of reliability and resilience, respectively, for the IEEE 9-
bus system. This test system represents a portion of the
Western System Coordinating Council (WSCC) 3-Machines
9-Bus system and includes nine buses, nine transmission
systems, three generators, and three loads. Figure 2 depicts
the grid in its purely physical form. Bus 1 is assumed to be
the reference/slack bus.

Fig. 2. IEEE 9-Bus System (figure adapted from [8])

Our motivation for selection of this test system is twofold.
The first benefit is the simplicity of the grid, which facilitates
illustration of concepts. The second benefit is that this system
has been the topic of several other studies, e.g., [9], [10]. The
results can serve as benchmarks for parts of our analysis.

For our case study, we used the Power System Analysis
Toolbox (PSAT) and PowerWorld, respectively, to simulate
the IEEE 9-bus system. PSAT is an open-source MATLAB-
based software package for analysis and design of electric
power systems [11]. PSAT supports a number of electronic
control devices and allows fault injection and manipulation
of information exchange between components. PowerWorld is
a proprietary simulation environment for high-voltage power
systems.

A. Reliability Analysis

In deriving a system-level reliability model for the IEEE 9-
bus system, we began with the purely physical infrastructure
of Figure 2. Using PSAT, we simulated single-line contingen-
cies; i.e., outage of each of the nine transmission lines. The
outage of lines (2-7), (3-9), and (1-4), respectively, triggered
cascading failures. In this notation, the two numbers in the
parentheses are the buses connected by the line in question.
Outage of any one of the six remaining transmission lines was
not found to trigger a cascade. In applying the MIS model of
Equation 2, we consider the system to be functional despite
the outage of a single line if a cascade is not triggered. Hence:

Rsys = p9L + 6p8LqL (4)

In Equation 4, the reliability of a transmission line is
represented by pL = 1 − qL. For tractability, all lines have
been considered equally reliable.

To determine the effect of intelligent control on reliabil-
ity of the system, we added one Static Synchronous Series
Compensator (SSSC) device to the system. An SSSC is a
computer-controlled power electronics (FACTS) device that is
connected in series with the AC system. The output current of
the SSSC is adjusted to control the nodal voltage magnitude.
The failure of an SSSC device could initiate cascading failures.
The configuration parameter that controls the power flow in the
system is Percentage amount of series compensation (PASC),
which ranges from 0 to 99. An SSSC will function as a breaker
if this parameter is set to 0.

Due to the small size of the system, we opted to use
a single SSSC for intelligent control of the resulting smart
grid. Optimal placement of the SSSC can be determined by
exhaustive search for a system of this size. The results of this
simulation fell into three groups. In the first group, using the
SSSC decreased the reliability of the system, even if the PASC
value was optimal. Addition of the SSSC did not change the
reliability of the system in the second group, regardless of
the PASC. The third group is where the goal of increasing
reliability is actually achieved. Placing an SSSC with a PASC
value ranging between 49 to 61 on line (8-9) was found to
decrease the number of potential cascading failures from three
to two. Placing an SSSC with a PASC value between 15 and
34 on line (5-7) had an identical effect.

Assuming that the SSSC is perfect, the reliability of the
smart grid can be determined using Equation 2:

Rsys = p9L + 7p8LqL (5)



A more realistic assumption is that the SSSC itself is
prone to failure. Denoting its reliability as pSSSC , the overall
reliability of the smart grid can be modeled as:

Rsys = (p9L+6∗p8LqL)∗pSSSC +
∑

∀states∈S

p8LqL∗pSSSC (6)

where S is the set of states where a cascading failure
would have occurred without an SSSC, but is prevented by
its addition (and correct configuration), and pSSSC is the
reliability of the SSSC device.

Figure 3 illustrates the results of our simulation. It is evident
that only a very reliable SSSC improves the system reliability
beyond that of the purely physical grid.

Fig. 3. Effect of SSSC on overall smart grid reliability

B. Resilience Analysis

In analyzing resilience, one of our objectives was to de-
termine the best strategy to recover from multiple failures.
Contrary to the reliability example, the line outages considered
are not necessarily the result of a cascade - they could occur
independently.

The first step in evaluating the resilience of the system is
selecting an appropriate quantifiable measure of functionality.
Violations of power flow and voltage constraints are typical
measures of the extent of disruption to a power grid. We
carried out contingency analysis by causing the outage of
three transmission lines on a common bus and observing the
resulting number of power flow and voltage violations. For
brevity, we discuss only the most severe failure: an outage of
lines (2-7), (5-7), and (7-8), which results in 11 violations (7
voltage and 4 power flow).

Contingency analysis demonstrated that for three-line dis-
ruptions, the maximum flow violation occurs on line (1-4),
where the rated apparent power limit is exceeded by 239%.
Thus, we selected the power flow on line (1-4) as our first
measure of functionality, F1. Further, in examining bus voltage
violations, we found that bus 8 experiences the lowest voltage
(0.968 power units (pu)) in response to the outage. The voltage
of bus 8 was selected as the second measure of functionality,
F2.

We compare the following two strategies for recovery from
the outage:

• Strategy 1: Recover lines 7-8, 5-7, and 2-7, in order
• Strategy 2: Recover lines 5-7, 7-8, and 2-7, in order
Equation 3 is used to calculate the resilience, based on F1

and F2, respectively. When the grid is functional, F1 = 76%
and F2 = 1.017 pu.

In comparing the two recovery strategies, we assume that
lines can be repaired one-at-a-time. Referring to Figure 1,
the first repair is initiated at time ts. t1 and t2 indicate the
beginning of the intermediate repair steps. The final (in this
case, third) repair is completed at time tf , when the system
is assumed to have returned to a functional state. We assume
that the repair of each of the three lines takes equally long,
and that this repair time is a known (deterministic) value. This
assumption will be relaxed in future work.

Tables II and III, respectively, show the values of the two
functional metrics, F1 and F2, and the respective resilience
values, Λ1 and Λ2, achieved by the two strategies examined.

TABLE II
RESILIENCE IN RECOVERY, USING STRATEGY 1

Metric
Time

t0 td ts t1 t2 tf

F1 76 239 239 238 235 76

Λ1 1 0 0 0.006 0.024 1

F2 1.017 0.968 0.968 0.992 1.007 1.017

Λ2 1 0 0 0.490 0.796 1

TABLE III
RESILIENCE IN RECOVERY, USING STRATEGY 2

Metric
Time

t0 td ts t1 t2 tf

F1 76 239 239 235 235 76

Λ1 1 0 0 0.02454 0.02454 1

F2 1.017 0.968 0.968 0.972 1.007 1.017

Λ2 1 0 0 0.0817 0.796 1

The resilience values can be used to select a restoration
strategy. Figure 4 compares the resilience, as calculated based
on F2, for recovery using each of the two strategies. Strategy 1
proves to be a better option, as it builds resilience faster; after
line (7-8) is recovered, the voltage on bus 8 increases from
0.968 pu to 0.992 pu, yielding a resilience value of ∼0.490.

Both strategies yield almost identical results when resilience
is calculated based on flow violations (F1), and as such,
this functional metric cannot be used to compare strategies.
Since the second strategy yields better results for Λ1, it is
recommended for recovery.

IV. RELATED WORK

Cascading failures, defined as “the usual mechanism by
which failures propagate to cause large blackouts of electric
power transmission systems,” are a major cause of widespread
outages in the power grid [12]. Relevant studies propose
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models for the propagation of hidden failures, and suggest
mitigation techniques based on configuration of control de-
vices [13], [14]. In [15], the authors developed a DC power
flow model to study the effect of the topology of the power
grid on failure propagation. The intuitive conclusion reached
was that increased connectivity can delay cascading, but
reduced connectivity can lead to improved performance during
contingencies. The effect of using local power sources was
investigated in [16], where simulation was used to demon-
strate that local power sources can reduce the probability of
cascading failure. The role of the depth of cascading failures
on robustness of the network was investigated in [17]. They
showed that system robustness increases when the grid can
tolerate deeper cascading failures and decreases when the
system fails quickly.

Contingency, defined as the failure of a device, e.g., a
line or transformer, is one cause of failures in power grids.
Studies such as [18] investigate the effect of line contingencies
on cascading failure and determine “importance” values for
each line. This study, as the vast majority of related studies,
considers a purely physical infrastructure. The addition of
power electronics devices that can control the flow of power on
a given line and prevent or mitigate the effect of contingencies
creates a cyber-physical power infrastructure. One type of
intelligent device used to this end is a Thyristor-Controlled
Series Capacitor (TCSC). The success of such devices in
preventing and mitigating cascading failures has been demon-
strated in several studies, including [19], [20], [21]. These
studies illustrated the impact of prudent location of the TCSC
on load management and distribution during a contingency.
The broader category of Flexible AC Transmission Systems
(FACTS), which can be considered to comprise TCSCs, has
been investigated in studies such as [22], [23]. Both studies
proposed techniques for optimal placement of FACTS and
algorithms for determination of the best settings for the
devices.

The work most closely related to the research presented in
this paper considers quantitative modeling of the reliability of
physical (vs. cyber-physical) power systems. Examples include
[24], which mainly focuses on reliability of power transmis-
sion systems, and [25] which describes an analytical approach
and a Monte Carlo simulation technique for evaluating the
reliability indices of distribution systems. A graph-theoretical
model for reliability, and subsequent importance analysis of

a power grid is presented in [26]. Our model for reliability
considers the effect of failures in the cyber infrastructure in
the overall likelihood of a cascading failure.

A second category of related work investigates techniques
for evaluating and increasing the resilience of networked
systems. Related studies often include importance analysis, as
one objective is to determine recovery strategies. A Markov
reward model is used for importance analysis in [27]. A more
detailed analysis is carried out in [28], where three importance
indices are defined. The first metric is the Failure Criticality
Index, which ranks the importance of components based on
a parameter of interest. The Restore Criticality Index is the
second metric, which assesses the impact of restoration of a
specific component. The third and final metric is the Operation
Criticality Index, defined as the ratio of component downtime
to system downtime.

Our work on resilience is based on the metrics and anal-
ysis proposed in [5] and [6]. Their analysis of component
vulnerability is similar to that of [29], which investigated
the importance of a component in a network by determining
the efficiency of the network during the failure of a single
component. The goal of [29] was to determine improvements
to the system that will considerably increase this efficiency.
Our work applies the approach of [5] and [6] in comparing
recovery strategies for a power grid, where the goal is to
achieve the highest resilience possible; i.e., regain acceptable
functionality as rapidly as possible. From the recovery point
of view, related work includes [30], where a congestion
management technique was introduced in order to decrease the
financial losses incurred during contingency; and [31], where
concurrent monitoring of providers and customers was carried
out manage and predict contingencies caused by sudden load
increases.

V. CONCLUSION

The overarching objective of the work presented in this
paper is to enable assessment of the capability of a power
grid to deliver the functionality expected. We sought to select
measures that collectively assess this capability during both
normal and degraded system operation - before, after, and
during recovery from a failure event. Reliability quantifies the
probability that a system will deliver acceptable functionality
under given conditions, over a given duration. We presented
a Markovian reliability model that calculates this probability
based on the reliability of constituent components of the
system and enumeration of “functional” and “failed” system
states. We demonstrated application of this reliability model
to the IEEE 9-bus test system, both with and without an intel-
ligent control device. We carried out single-line contingency
analysis, and considered the system functional whenever the
line outage did not result in cascading failure. The results
reinforced an intuitive conclusion - that only very reliable
intelligent control can improve an already reliable physical
infrastructure.

Reliability is incapable of assessing degraded functionality.
As such, we selected resilience as the metric to be used in



evaluating the system after a failure has occurred. Resilience
captures the ability of the system to recover from catastrophic
failure and return to a state where it is considered functional.
More specifically, it is the ratio of recovered functionality to
lost functionality. Evaluation of resilience requires selection
of a quantitative functional metric. In our analysis of the
IEEE 9-bus system, we selected line flow violations and
voltage violations, respectively, as two functional metrics
used in calculation of resilience. We compared the resilience
achieved using different recovery strategies for restoration of
transmission lines whose outage had led to catastrophic failure
of the grid. This type of analysis can be invaluable in decision
support for real-time failure mitigation.

Our techniques for analyzing reliability and resiliency are
not specific to power grid systems. They can be applied to
many fields, including other critical infrastructures, and even
software engineering. Both techniques can scale to systems
much more complex than the examples in this paper.

Future extensions to the work presented include investiga-
tion of the effect of intelligent control on resilience of a power
grid, importance analysis of various components of a smart
grid, consideration of non-determinism in restorative actions,
and bounding the time before recovery actions are attempted.
Modeling of system survivability, availability, and recovery are
also planned. Finally, the proposed techniques will be applied
to significantly larger and more complex smart grids, possibly
in an iterative fashion.

REFERENCES

[1] U.S.-Canada Power System Outage Task Force, “Final report on the
August 14, 2003 blackout in the United States and Canada: Causes and
recommendations,” tech. rep., Apr. 2012.

[2] Federal Energy Regulatory Commission and North American Electric
Reliability Corporation, “Final report on the Arizona-Southern Califor-
nia outages on September 8, 2011,” tech. rep., Apr. 2004.

[3] A. Faza, S. Sedigh, and B. McMillin, “Integrated cyber-physical fault
injection for reliability analysis of the smart grid,” in Proc. of the 29th
International Conference on Computer Safety, Reliability and Security
(SAFECOMP ’10), (Vienna, Austria), pp. 277–290, Sept. 2010.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, pp. 11–33, Jan.-Mar.
2004.

[5] D. Henry and J. E. Ramirez-Marquez, “Generic metrics and quantitative
approaches for system resilience as a function of time,” Reliability
Engineering & System Safety, vol. 99, pp. 114 – 122, 2012.

[6] K. Barker, J. E. Ramirez-Marquez, and C. M. Rocco, “Resilience-based
network component importance measures,” Reliability Engineering &
System Safety, vol. 117, no. 0, pp. 89 – 97, 2013.

[7] W. Kuo and M. J. Zuo, Optimal Reliability Modeling, Principles and
Applications, pp. 164–171. John Wiley and Sons, Inc., Hoboken, New
Jersey, 2003.

[8] Illinois Center for a Smarter Electric Grid (ICSEG), “Case
1 - IEEE 9 Bus Systems.” http://publish.illinois.edu/smartergrid/
case-1-ieee-9-bus-systems/, Apr 23, 2014.

[9] Z.-G. Wu, Q. Zhong, and Y. Zhang, “State transition graph of cascading
electrical power grids,” in Proc. of the IEEE Power Engineering Society
General Meeting, pp. 1–7, June 2007.

[10] J.-H. Heo, M.-K. Kim, G.-P. Park, Y.-T. Yoon, J.-K. Park, S.-S. Lee, and
D.-H. Kim, “A reliability-centered approach to an optimal maintenance
strategy in transmission systems using a genetic algorithm,” IEEE
Transactions on Power Delivery, vol. 26, pp. 2171–2179, Oct 2011.

[11] F. Milano, “An open source Power System Analysis Toolbox,” IEEE
Transactions on Power Systems, vol. 20, pp. 1199–1206, Aug. 2005.

[12] I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, “Complex
systems analysis of series of blackouts: Cascading failure, critical points,
and self-organization,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 17, no. 2, p. 026103, 2007.

[13] D. Pepyne, C. Panayiotou, C. Cassandras, and Y.-C. Ho, “Vulnerability
assessment and allocation of protection resources in power systems,” in
Proc. of the American Control Conference, vol. 6, pp. 4705–4710 vol.6,
2001.

[14] J. Chen, J. Thorp, and I. Dobson, “Cascading dynamics and mitigation
assessment in power system disturbances via a hidden failure model,”
International Journal of Electrical Power and Energy Systems, vol. 27,
no. 4, pp. 318–326, 2005.

[15] D. L. Pepyne, “Topology and cascading line outages in power grids,”
Journal of Systems Science and Systems Engineering, vol. 16, no. 2,
pp. 202–221, 2007.

[16] X. Chen, H. Dinh, and B. Wang, “Cascading failures in smart grid -
benefits of distributed generation,” in Proc. of the IEEE International
Conference on Smart Grid Communications (SmartGridComm), pp. 73–
78, 2010.

[17] M. Youssef, C. Scoglio, and S. Pahwa, “Robustness measure for power
grids with respect to cascading failures,” in Proc. of the International
Workshop on Modeling, Analysis, and Control of Complex Networks
(CNET), pp. 45–49, ITCP, 2011.

[18] M. Moghavvemi and O. Faruque, “Real-time contingency evaluation and
ranking technique,” IEE Proceedings on Generation, Transmission and
Distribution, vol. 145, no. 5, pp. 517–524, 1998.

[19] S. Slochanal, M. Saravanan, and A. Devi, “Application of PSO technique
to find optimal settings of TCSC for static security enhancement
considering installation cost,” in Proc. of the 7th International Power
Engineering Conference (IPEC), pp. 1–394, 2005.

[20] G. Rashed, H. I. Shaheen, and S. Cheng, “Evolutionary optimization
techniques for optimal location and parameter settings of TCSC under
single-line contingency,” in Proc. of the IEEE Power and Energy Society
General Meeting, pp. 1–9, 2008.

[21] A. Othman, M. Lehtonen, and M. El-Arini, “Enhancing the contingency
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